NotesProvider dishacollege.ac.in

BCA 1ST Semester

BCA - 101: COMPUTER FUNDAMENTALS AND PROGRAMMING

UNIT: 4

(Programming Using C)

C programming :

C programming is a general-purpose, procedural, imperative computer programming language
developed in 1972 by Dennis M. Ritchie at the Bell Telephone Laboratories. C is the most
widely used computer language. It keeps fluctuating at number one scale of popularity along
with Java programming language, which is also equally popular and most widely used among
modern software programmers.

Tokens in C

A C program consists of various tokens and a token is either a keyword, an identifier, a

constant, a string literal, or a symbol. For example, the following C statement consists of five
tokens —

printf ("Hello, World! \n");

Identifiers

A C identifier is a name used to identify a variable, function, or any other user-defined item. An
identifier starts with a letter A to Z, a to z, or an underscore '_' followed by zero or more letters,
underscores, and digits (0 to 9).

mohd zara abc move name a_ 123
myname50 _temp J a23b9 retval
Keywords

The following list shows the reserved words in C. These reserved words may not be used as
constants or variables or any other identifier names.

auto else long switch
break enum register typedef
case extern return union

Satyam Chauhan Page 1

NotesProvider

char float
const for
continue goto
default if
do int
Data types :

short

signed

sizeof

static

struct

dishacollege.ac.in

unsigned

void

volatile

while

_Packed

Data types in c refer to an extensive system used for declaring variables or functions of different
types. The type of a variable determines how much space it occupies in storage and how the bit
pattern stored is interpreted.

Integer Types

The following table provides the details of standard integer types with their storage sizes and value

ranges —

Type

char

unsigned char

signed char

int

unsigned int

short

unsigned short

long

unsigned long

Storage size

1 byte

1 byte

1 byte

2 or 4 bytes

2 or 4 bytes

2 bytes

2 bytes

8 bytes or (4bytes for 32 hit OS)

8 bytes

Value range

-128 to 127 or 0 to 255

0 to 255

-128 to 127

-32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

0 to 65,535 or 0 to 4,294,967,295

-32,768 to 32,767

0 to 65,535

-9223372036854775808 to
9223372036854775807

0 to 18446744073709551615

Satyam Chauhan

Page 2

NotesProvider dishacollege.ac.in

Floating-Point Types

The following table provide the details of standard floating-point types with storage sizes and
value ranges and their precision -

Type Storage size Value range Precision
float 4 byte 1.2E-38 to 3.4E+38 6 decimal places
double 8 byte 2.3E-308 to 1.7E+308 15 decimal places
long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The void Type
The void type specifies that no value is available. It is used in three kinds of situations -

Sr.No. Types & Description

Function returns as void

There are various functions in C which do not return any value or you can say they
return void. A function with no return value has the return type as void. For
example, void exit (int status);

2 . .
Function arguments as void
There are various functions in C which do not accept any parameter. A function with
no parameter can accept a void. For example, int rand(void);

3

Pointers to void

A pointer of type void * represents the address of an object, but not its type. For
example, a memory allocation function void *malloc(size_t size); returns a pointer
to void which can be casted to any data type.

Variable :

A variable is nothing but a name given to a storage area that our programs can manipulate.
Each variable in C has a specific type, which determines the size and layout of the variable's
memory; the range of values that can be stored within that memory; and the set of operations
that can be applied to the variable.

type variable list;

Satyam Chauhan Page 3

NotesProvider dishacollege.ac.in

The name of a variable can be composed of letters, digits, and the underscore character. It
must begin with either a letter or an underscore. Upper and lowercase letters are distinct
because C is case-sensitive. Based on the basic types explained in the previous chapter, there
will be the following basic variable types -

Sr.No. Type & Description
1 char
Typically a single octet(one byte). It is an integer type.
2 int
The most natural size of integer for the machine.
3 float
A single-precision floating point value.
4 double
A double-precision floating point value.
S void
Represents the absence of type.
Constant :

Constants refer to fixed values that the program may not alter during its execution. These fixed
values are also called literals.

Constants can be of any of the basic data types like an integer constant, a floating constant, a
character constant, or a string literal. There are enumeration constants as well.

Constants are treated just like regular variables except that their values cannot be modified
after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base
or radix: Ox or OX for hexadecimal, O for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and long,
respectively. The suffix can be uppercase or lowercase and can be in any order.

Satyam Chauhan Page 4

NotesProvider dishacollege.ac.in

Here are some examples of integer literals -

212 /* Legal */
215u /* Legal */
OxFeelL /* Legal */
078 /* Illegal: 8 is not an octal digit */
032UU /* Illegal: cannot repeat a suffix */

Floating-point Literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent
part. You can represent floating point literals either in decimal form or exponential form.

While representing decimal form, you must include the decimal point, the exponent, or both;
and while representing exponential form, you must include the integer part, the fractional part,
or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals —

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.eb55 /* Illegal: missing integer or fraction */

Character Constants

Character literals are enclosed in single quotes, e.g., X' can be stored in a simple variable
of char type.

A character literal can be a plain character (e.g., 'X’), an escape sequence (e.g., '\t'), or a
universal character (e.g., "\u02CQ).

There are certain characters in C that represent special meaning when preceded by a
backslash for example, newline (\n) or tab (\t).

String Literals
String literals or constants are enclosed in double quotes ™. A string contains characters that

are similar to character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separating them using
white spaces.

Here are some examples of string literals. All the three forms are identical strings.
"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

Satyam Chauhan Page 5

NotesProvider dishacollege.ac.in

Operators :

An operator is a symbol that tells the compiler to perform specific mathematical or logical
functions. C language is rich in built-in operators and provides the following types of operators

o Arithmetic Operators

o Relational Operators

e Logical Operators

e Bitwise Operators

e Assignment Operators
e Misc Operators

We will, in this chapter, look into the way each operator works.

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C language. Assume
variable A holds 10 and variable B holds 20 then —

Operator Description Example
+ Adds two operands. A+B=30
- Subtracts second operand from the first. A-B=-10
* Multiplies both operands. A*B =200
/ Divides numerator by de-numerator. B/A=2

% Modulus Operator and remainder of after an integer division. B% A=0

++ Increment operator increases the integer value by one. A++=11

-- Decrement operator decreases the integer value by one. A--=9

Satyam Chauhan Page 6

NotesProvider

dishacollege.ac.in

#include
main ()
int a =
int b

int c¢

C:
printf ("Line 1

C:
printf ("Line 2

C:
printf ("Line 3

c =a / b;
printf ("Line 4
c =a % b;
printf ("Line 5
c = at+;
printf ("Line 6
c = a—;

printf ("Line

{

a

<stdio.h>

21;
= 10;

’

+ b;

a - b;

a

*b;

Value

Value

Value

Value

Value

Value

Value

of c

of ¢

of c

of c

of ¢

of c

of ¢

is

is

is

is

is

is

is

%d\n",

sd\n",

$d\n",

$d\n",

sd\n",

$d\n",

sd\n",

Q

Q

Q

When you compile and execute the above program, it produces the following result —

Line
Line
Line
Line
Line
Line
Line

~ o U WD

- Value
- Value
- Value
- Value
- Value
- Value
- Value

of
of
of
of
of
of
of

is
is
is
is
is
is
is

Q Q000 a

31
11
210
2

1
21
22

Relational Operators :

The following table shows all the relational operators supported by C. Assume variable A holds
10 and variable B holds 20 then -

Satyam Chauhan

Page 7

NotesProvider dishacollege.ac.in

Operator Description Example
== Checks if the values of two operands are equal or not. If yes, then the (A==B)
condition becomes true. is not
true.

I= Checks if the values of two operands are equal or not. If the values are not (A'=B)

equal, then the condition becomes true. is true.
> Checks if the value of left operand is greater than the value of right operand. (A > B)
If yes, then the condition becomes true. is not
true.
< Checks if the value of left operand is less than the value of right operand. If (A <B)
yes, then the condition becomes true. is true.
>= Checks if the value of left operand is greater than or equal to the value of (A>=B)
right operand. If yes, then the condition becomes true. is not
true.
<= Checks if the value of left operand is less than or equal to the value of right (A<=B)
operand. If yes, then the condition becomes true. is true.

#include <stdio.h>

main () {
int a = 21;
int b = 10;
int ¢ ;
if(a ==) |
printf ("Line 1 - a is equal to b\n");
} else {
printf ("Line 1 - a is not equal to b\n");

}

if ((a < b) {

printf ("Line 2 - a is less than b\n");
} else {
printf ("Line 2 - a is not less than b\n");

}

if (a >b) {

printf ("Line 3 - a is greater than b\n");
} else {
printf ("Line 3 - a is not greater than b\n");

}

Satyam Chauhan Page 8

NotesProvider dishacollege.ac.in

/* Lets change value of a and b */
a = 5;
b = 20;

if (a <=Db) {
printf ("Line 4 - a is either less than or equal to Db\n");

}

if (b > a) |
printf ("Line 5 - b is either greater than or equal to b\n");

}

When you compile and execute the above program, it produces the following result -

Line 1 - a 1is not equal to b

Line 2 - a is not less than b

Line 3 - a 1s greater than b

Line 4 - a is either less than or equal to b
Line 5 - b is either greater than or equal to b

Logical Operators

Following table shows all the logical operators supported by C language. Assume variable A holds 1 and
variable B holds 0, then —

Operator Description Example
&& Called Logical AND operator. If both the operands are non-zero, then the (A && B)
condition becomes true. is false.

Il Called Logical OR Operator. If any of the two operands is non-zero, thenthe (A || B)is

condition becomes true. true.

! Called Logical NOT Operator. It is used to reverse the logical state of its (A &&
operand. If a condition is true, then Logical NOT operator will make it false. B) is
true.

#include <stdio.h>

main () {
int a = 5;
int b = 20;
int c ;

if (a && b) {
printf ("Line 1 - Condition is true\n");

}

if (a |l b) |
printf ("Line 2 - Condition is true\n");

}

Satyam Chauhan Page 9

NotesProvider dishacollege.ac.in

/* lets change the value of a and b */
a
b

0;
10;

if (a && b) |

printf ("Line 3 - Condition is true\n");
} else {

printf ("Line 3 - Condition is not true\n");
}
if (!'(a && b)) {

printf ("Line 4 - Condition is true\n");

}

When you compile and execute the above program, it produces the following result -

Line 1 - Condition is true
Line 2 - Condition is true
Line 3 - Condition is not true
Line 4 - Condition is true

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ~ is as
follows -

p q P&q Pla P"q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume A = 60 and B = 13 in binary format, they will be as follows -
A =0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A”B = 0011 0001

Satyam Chauhan Page 10

NotesProvider

~A =1100 0011

dishacollege.ac.in

The following table lists the bitwise operators supported by C. Assume variable 'A' holds 60
and variable 'B' holds 13, then —

#include <stdio.

main () {

unsigned int
unsigned int
int ¢ = 0;

c =a & b;
printf ("Line

c =a | b;
printf ("Line

c =a " b;
printf ("Line

c = ~a;
printf ("Line

c = a << 2;
printf ("Line

c =a > 2;
printf ("Line
}

h>

= 60; /* 60 0011 1100 */
= 13; /* 13 = 0000 1101 */
/* 12 = 0000 1100 */
- Value of c¢ is %d\n", c);
/* 61 = 0011 1101 */
- Value of c is %d\n", c);
/* 49 = 0011 0001 */
- Value of c¢ is %d\n", c);
/*-61 = 1100 0011 */
- Value of c is %d\n", c);
/* 240 = 1111 0000 */
- Value of c is %d\n", c);
/* 15 = 0000 1111 */
- Value of c is %d\n", c);

When you compile and execute the above program, it produces the following result -

Line
Line
Line
Line
Line
Line

1

o U b W N

Value
Value
Value
Value
Value
Value

of
of
of
of
of
of

QO QA

is
is
is
is
is
is

12
61
49
=@
240
15

Assignment Operators :

The following table lists the assignment operators supported by the C language -

Operator

Description Example
Simple assignment operator. Assigns values from right side operands to C=A+B
left side operand will assign
the value

of A+B

Satyam Chauhan

Page 11

NotesProvider dishacollege.ac.in

toC
+= Add AND assignment operator. It adds the right operand to the left operand C +=Ais
and assign the result to the left operand. equivalent
toC=C+
A

-= Subtract AND assignment operator. It subtracts the right operand fromthe C-=Als
left operand and assigns the result to the left operand. equivalent
toC=C-
A

= Multiply AND assignment operator. It multiplies the right operand with the C=Ais
left operand and assigns the result to the left operand. equivalent
toC=C*
A

/= Divide AND assignment operator. It divides the left operand with the right C/=Ais
operand and assigns the result to the left operand. equivalent
toC=C/
A

%= Modulus AND assignment operator. It takes modulus using two operands C%=Ais
and assigns the result to the left operand. equivalent
toC=C
% A

<<= Left shift AND assignment operator. C<<=2
is same
asC=C
<< 2

>>= Right shift AND assignment operator. C>>=2
is same
asC=C
>> 2

&= Bitwise AND assignment operator. C&=2is
same as
C=C&?2

A= Bitwise exclusive OR and assignment operator. gs“éfigfazme

Satyam Chauhan Page 12

NotesProvider dishacollege.ac.in

= Bitwise inclusive OR and assignment operator. Cl=2is
same as
C=C]|2
Example

Try the following example to understand all the assignment operators available in C -

[Live Demd]

#include <stdio.h>
main () {

int a = 21;

int ¢ ;
c = a;
printf ("Line 1 - = Operator Example, Value of c = %d\n", c);
c += a;

printf ("Line 2 - += Operator Example, Value of c¢ = %d\n", c);

c -= a;
printf ("Line 3 - -= Operator Example, Value of ¢ = %d\n", c);
c *= a;
printf ("Line 4 - *= Operator Example, Value of ¢ = %d\n", c);
c /= a;

printf ("Line 5 - /= Operator Example, Value of c¢c = %d\n", c);

c = 200;
c 3= a;
printf ("Line 6 - %= Operator Example, Value of ¢ = %d\n", c);
c <<= 2;
printf ("Line 7 - <<= Operator Example, Value of c = %d\n", c);

c >>= 23
printf ("Line 8 - >>= Operator Example, Value of c = %d\n", c);

c &= 2;
printf ("Line 9 - &= Operator Example, Value of ¢ = %d\n", c);
c "= 2;
printf ("Line 10 - ~= Operator Example, Value of c = %d\n", c);
c |= 2;
printf ("Line 11 - |= Operator Example, Value of ¢ = %d\n", c);

Satyam Chauhan Page 13

http://tpcg.io/vAn15K

NotesProvider dishacollege.ac.in

When you compile and execute the above program, it produces the following result -

Line 1 - = Operator Example, Value of c = 21
Line 2 - += Operator Example, Value of c = 42
Line 3 - -= Operator Example, Value of c = 21
Line 4 - *= Operator Example, Value of c = 441
Line 5 - /= Operator Example, Value of c = 21
Line 6 - %= Operator Example, Value of c = 11
Line 7 - <<= Operator Example, Value of c = 44
Line 8 - >>= Operator Example, Value of c = 11
Line 9 - &= Operator Example, Value of c = 2

Line 10 - *= Operator Example, Value of c¢c = 0
Line 11 - |= Operator Example, Value of c = 2

Decision making structures :

Decision making structures require that the programmer specifies one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the
condition is determined to be false.

Show below is the general form of a typical decision making structure found in most of the
programming languages —

If condition If condition

is true is false

\i

conditional V
code

®

C programming language assumes any non-zero and non-null values as true, and if it is
either zero or null, then it is assumed as false value.

C programming language provides the following types of decision making statements.

Satyam Chauhan Page 14

NotesProvider dishacollege.ac.in

Sr.No. Statement & Description

1 if statement

An if statement consists of a boolean expression followed by one or more statements.

2 if...else statement

An if statement can be followed by an optional else statement, which executes when
the Boolean expression is false.

3 nested if statements

You can use one if or else if statement inside another if or else if statement(s).

4 switch statement

A switch statement allows a variable to be tested for equality against a list of values.

5 nested switch statements

You can use one switch statement inside another switch statement(s).

Loop :

A loop statement allows us to execute a statement or group of statements multiple times.
Given below is the general form of a loop statement in most of the programming languages —

A

Conditional Code

If condition
is true

If condition
is false

Satyam Chauhan Page 15

https://www.tutorialspoint.com/cprogramming/if_statement_in_c.htm
https://www.tutorialspoint.com/cprogramming/if_else_statement_in_c.htm
https://www.tutorialspoint.com/cprogramming/nested_if_statements_in_c.htm
https://www.tutorialspoint.com/cprogramming/switch_statement_in_c.htm
https://www.tutorialspoint.com/cprogramming/nested_switch_statements_in_c.htm

NotesProvider dishacollege.ac.in

C programming language provides the following types of loops to handle looping requirements.

Sr.No. Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is true. It tests the
condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the code that
manages the loop variable.

3 do...while loop

It is more like a while statement, except that it tests the condition at the end of the loop
body.

4 nested loops

You can use one or more loops inside any other while, for, or do..while loop.

while loop :

A while loop in C programming repeatedly executes a target statement as long as a given
condition is true.

Syntax

The syntax of a while loop in C programming language is -

while (condition) {
statement (s) ;

}

for loop :

A for loop is a repetition control structure that allows you to efficiently write a loop that needs to
execute a specific number of times.

Syntax

The syntax of a for loop in C programming language is —

for (init; condition; increment) {
statement (s); }

Satyam Chauhan Page 16

https://www.tutorialspoint.com/cprogramming/c_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_for_loop.htm
https://www.tutorialspoint.com/cprogramming/c_do_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_nested_loops.htm

NotesProvider dishacollege.ac.in

do-while loop :

A do...while loop is similar to a while loop, except the fact that it is guaranteed to execute at
least one time.

Syntax

The syntax of a do...while loop in C programming language is —

do {
statement (s) ;
} while(condition);

nested loops :

C programming allows to use one loop inside another loop. The following section shows a few
examples to illustrate the concept.

Syntax
The syntax for a nested for loop statement in C is as follows -
for (init; condition; increment) {

for (init; condition; increment) {

statement (s) ;

}

statement (s) ;

}
The syntax for a nested while loop statement in C programming language is as follows —
while (condition) {

while (condition) {

statement (s) ;

}

statement (s) ;

}
The syntax for a nested do...while loop statement in C programming language is as follows -
do {

statement (s) ;

do {
statement (s) ;
}while(condition);

}while (condition) ;

Satyam Chauhan Page 17

https://www.tutorialspoint.com/cprogramming/c_nested_loops.htm

